Формулы по теории вероятности онлайн

В данном разделе вы найдете формулы по теории вероятностей в онлайн-варианте (скачать можно на странице Таблицы и формулы по теории вероятностей). Если слово подчеркнуто, щелкнув на ссылке, вы перейдете к подробному описанию термина, примерам или вычислению на онлайн-калькуляторе. Используйте эти возможности!

А также для изучения тервера у нас есть:

Спасибо, что читаете и делитесь с другими


I. Случайные события. Основные формулы онлайн

1. Основные формулы комбинаторики

Число перестановок $$P_n = n! = 1\cdot 2 \cdot 3 \cdot ... \cdot (n-1) \cdot n$$

Число размещений $$A_m^n = n \cdot (n-1) \cdot ... \cdot (n-m+1)$$

Число сочетаний $$C_n^m =\frac{A_n^m}{P_m}=\frac{n!}{m! \cdot (n-m)!}$$


2. Классическое определение вероятности

$$P(A) = \frac{m}{n},$$ где $m$ - число благоприятствующих событию $A$ исходов, $n$ - число всех элементарных равновозможных исходов.

Подробнее о классической вероятности см. в онлайн-учебнике и калькуляторах решений.


3. Вероятность суммы событий

Теорема сложения вероятностей несовместных событий:

$$ P(A+B) = P(A)+P(B) $$

Теорема сложения вероятностей совместных событий:

$$ P(A+B) = P(A)+P(B)-P(AB) $$

Примеры решений и теория по алгебре событий тут.


4. Вероятность произведения событий

Теорема умножения вероятностей независимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B) $$

Теорема умножения вероятностей зависимых событий:

$$ P(A\cdot B) =P(A)\cdot P(B|A),\\ P(A\cdot B) =P(B)\cdot P(A|B). $$

$P(A|B)$ - условная вероятность события $A$ при условии, что произошло событие $B$,

$P(B|A)$ - условная вероятность события $B$ при условии, что произошло событие $A$.

Подробнее об условной вероятности.


5. Формула полной вероятности

$$ P(A)=\sum_{k=1}^{n} P(H_k)\cdot P(A|H_k), $$

где $H_1, H_2, ..., H_n$ - полная группа гипотез.


6. Формула Байеса (Бейеса). Вычисление апостериорных вероятностей гипотез

$$ P(H_m|A) =\frac{P(H_m)\cdot P(A|H_m)}{P(A)} = \frac{P(H_m)\cdot P(A|H_m)}{\sum\limits_{k=1}^{n} P(H_k)\cdot P(A|H_k)}, $$

где $H_1, H_2, ..., H_n$ - полная группа гипотез.

Примеры и теория на эту тему.


7. Формула Бернулли

$$ P_n(k)=C_n^k \cdot p^k \cdot (1-p)^{n-k} = \frac{n!}{k! \cdot (n-k)!}\cdot p^k \cdot (1-p)^{n-k} $$ вероятность появления события ровно $k$ раз в $n$ независимых испытаниях, $p$ - вероятность появления события при одном испытании.

Еще полезное по формуле Бернулли теория и примеры, онлайн-калькуляторы.


8. Наивероятнейшее число наступления события

Наивероятнейшее число $k_0$ появления события при $n$ независимых испытаниях (где $p$ - вероятность появления события при одном испытании):

$$ np-(1-p) \le k_0 \le np+p. $$

Вычислить наивероятнейшее значение онлайн.


9. Локальная формула Лапласа

$$ P_n(k) = \frac{1}{\sqrt{npq}} \varphi\left( \frac{k-np}{\sqrt{npq}} \right) $$

вероятность появления события ровно $k$ раз при $n$ независимых испытаниях, $p$ - вероятность появления события при одном испытании, $q=1-p$.
Значения функции $\varphi(x)$ берутся из таблицы.


10. Интегральная формула Лапласа

$$ P_n(m_1, m_2) = \Phi\left( \frac{m_2-np}{\sqrt{npq}} \right)-\Phi\left( \frac{m_1-np}{\sqrt{npq}} \right) $$

вероятность появления события не менее $m_1$ и не более $m_2$ раз при $n$ независимых испытаниях, $p$ - вероятность появления события при одном испытании, $q=1-p$.
Значения функции $\Phi(x)$ берутся из таблицы.

Теория и примеры на формулы Муавра-Лапласа.


11. Оценка отклонения относительной частоты от постоянной вероятности $p$

$$ P\left( \left| \frac{m}{n} -p\right| \le \varepsilon\right) = 2 \Phi\left( \varepsilon\cdot \frac{n}{\sqrt{p(1-p)}} \right) $$

$\varepsilon$ - величина отклонения, $p$ - вероятность появления события.



Решенные задачи по теории вероятностей

Нужна готовая задача по терверу? Найдите на сайте-решебнике:



Каталог формул по теории вероятности онлайн

Полный список страниц с формулами:

Спасибо, что читаете и делитесь с другими


Качественно решим теорию вероятностей. Закажите сейчас!