Решение транспортных задач линейного программирования

Среди всех задач линейного программирования (ЗЛП) особняком стоят несколько типов, в частности, транспортные задачи. Конечно, и их можно решить общепринятым симплекс-методом, но вычисления получатся неоправданно сложными и объемными из-за размерности задачи (например, для самой простой задачи с 3 складами и 3 поставщиками - 9 ограничений и 9 переменных).

Поэтому для решения транспортных задач были разработаны специальные методы: для нахождения опорного/начального плана (минимального элемента, северо-западного угла, Фогеля), и для нахождения оптимального плана (метод потенциалов, дифференциальных рент, распределительный метод).

Примеры решений транспортных задач ЛП некоторыми из этих методов приведены в этом разделе - изучайте, ищите похожие, решайте. Если вам нужна помощь в выполнении подобных заданий, перейдите в раздел: Решение контрольных работ по линейному программированию.

Примеры решения транспортной задачи онлайн

Задача 1. Из трех холодильников Ai, i=1..3, вмещающих мороженную рыбу в количествах ai т, необходимо последнюю доставить в пять магазинов Bj, j=1..5 в количествах bj т. Стоимости перевозки 1т рыбы из холодильника Ai в магазин Bj заданы в виде матрицы Cij, 3x5.
Написать математическую модель задачи и спланировать перевозки так, чтобы их общая стоимость была минимальной.

Решение транспортной задачи методом потенциалов (pdf, 63 Кб)

Задача 2. Построить закрытую модель транспортной задачи.

Построение модели транспортной задачи (pdf, 50 Кб)

Задача 3. В таблице приведены исходные данные транспортной задачи: заданы удельные транспортные расходы на перевозку единицы груза, слева указаны возможности поставщиков, а сверху – спрос потребителей. Сформулируйте экономико-математическую модель транспортной задачи, распределительным методом найдите оптимальный план перевозок.
(таблица в файле)

Решение транспортной задачи распределительным методом (pdf, 79 Кб)

Задача 4. Решить транспортную задачу
1) методом потенциалов (опорный план построить всеми известными способами);
2) методом дифференциальных рент;
3) любым методом при ограничениях: x24≥4, x35≤5, x12=3.
(таблица в файле)

Решение транспортной задачи с ограничениями различными методами (pdf, 12 страниц, 124 Кб)

Узнали что-то полезное? Поделитесь с друзьями:


Решаем транспортные задачи на заказ