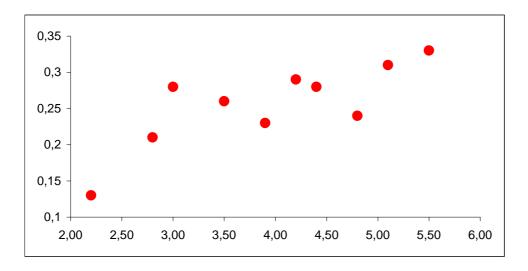
©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Решение задач на построение линейной регрессии

Задание.

В таблице 2 приведены данные зависимости потребления Y (усл. ед.) от дохода X (усл. ед.) для некоторых домашних хозяйств.


- 1. В предположении, что между Y и X существует линейная зависимость, найдите точечные оценки коэффициентов линейной регрессии.
- 2. Найдите стандартное отклонение s и коэффициент детерминации R^2 .
- 3. В предположении нормальности случайной составляющей регрессионной модели проверьте гипотезу об отсутствии линейной зависимости между Y и X.
- 4. Каково ожидаемое потребление \widehat{Y}_n домашнего хозяйства с доходом $X_n = 7$ усл. ед.? Найдите доверительный интервал для прогноза.

Дайте интерпретацию полученных результатов. Уровень значимости во всех случаях считать равным $\alpha = 1 - \gamma = 0.05$.

X	2,20	2,80	3,00	3,50	3,90	4,20	4,40	4,80	5,10	5,50
Y	0,13	0,21	0,28	0,26	0,23	0,29	0,28	0,24	0,31	0,33

Решение.

Построим облако корреляции, точки на плоскости, где абсцисса будет означать доход, а ордината – объем потребления. Получим:

По виду диаграммы можно предположить, что между доходами и объемом потребления существует прямая линейная связь.

Сначала найдем характеристики случайных величин X и Y: выборочное среднее и выборочное среднее квадратическое отклонение.

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Выборочная средняя
$$\bar{x} = \frac{1}{n} \sum x_i = \frac{1}{10} 39, 40 = 3,94$$

Выборочная дисперсия
$$\overline{D}_x = \frac{1}{n} \sum_{i=1}^{n} (x_i - x_i)^2 = \frac{1}{10} 10, 2 = 1,02$$

Выборочное квадратическое отклонение $\sigma_x = \sqrt{\overline{D_x}} = 1,01$

Выборочная средняя
$$\overline{y} = \frac{1}{n} \sum y_i = \frac{1}{10} 2,56 = 0,256$$

Выборочная дисперсия
$$\overline{D}_y = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2 = \frac{1}{10} (0.03 = 0.003)$$

Выборочное квадратическое отклонение $\sigma_y = \sqrt{\overline{D_y}} = 0,054$

Осталось подсчитать $\sum x_i y_i = 10,52$.

Все расчеты занесем в таблицу:

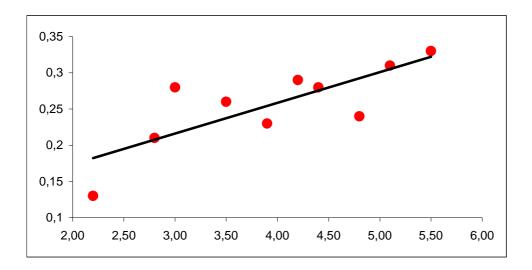
												Сумма
Ĵ	x_i	2,20	2,80	3,00	3,50	3,90	4,20	4,40	4,80	5,10	5,50	39,40
3	y_i	0,13	0,21	0,28	0,26	0,23	0,29	0,28	0,24	0,31	0,33	2,56
(x_i)	$-\overline{x}$) ²	3,0276	1,2996	0,8836	0,1936	0,0016	0,0676	0,2116	0,7396	1,3456	2,4336	10,20
(y _i	$-\overline{y}$) ²	0,0159	0,0021	0,0006	2E-05	0,0007	0,0012	0,0006	0,0003	0,0029	0,0055	0,03
Х	$\zeta_i y_i$	0,286	0,588	0,84	0,91	0,897	1,218	1,232	1,152	1,581	1,815	10,52

Тогла линейный коэффициент корреляции

$$r_{_{\! g}} = \frac{\sum x_{_{\! i}} y_{_{\! i}} - n \overline{x} \overline{y}}{n \sigma_{_{\! x}} \sigma_{_{\! y}}} = \frac{10,52 - 10 \cdot 3,94 \cdot 0,256}{10 \cdot 1,01 \cdot 0,054} \approx 0,787$$
. Связь тесная, прямая.

Уравнение регрессии Y на X имеет вид $\overline{y_x} - \overline{y} = r_g \frac{\sigma_y}{\sigma_x} (x - \overline{x})$. Подставляем все величины:

$$\overline{y_x}$$
 - 0, 256 = 0, 787 $\frac{0,054}{1,01}$ (x - 3,94)


$$\overline{y_x} = 0.042x + 0.09$$

Точечные оценки параметров регрессии: a = 0.042, b = 0.09.

Графическое изображение поля корреляции и линии регрессии:

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Найдем стандартное отклонение s.

$$s_x = \sqrt{\frac{1}{n-1} \sum (x_i - \overline{x})^2} = \sqrt{\frac{1}{9} 10.2} \approx 1,065,$$

$$s_y = \sqrt{\frac{1}{n-1} \sum (y_i - \overline{y})^2} = \sqrt{\frac{1}{9} 0.03} \approx 0,057$$

Коэффициент детерминации $R^2 = r_g^2 = 0,787^2 \approx 0,619$.

Введем нулевую гипотезу $H_0: r=0$. Проверим гипотезу об отсутствии линейной корреляционной зависимости (о незначимости коэффициента корреляции). Вычислим значение критерия $T_{\text{набл}} = \frac{r_s \sqrt{n-2}}{\sqrt{1-r_s^2}} = \frac{0.787 \cdot \sqrt{9}}{\sqrt{1-(0.787)^2}} \approx 3,83$.

Найдем критическую точку по уровню значимости $\alpha=0.05$ и числу степеней свободы k=n-2=8, получаем $t_{\kappa p}=2.306$. Так как $\left|T_{\mu a \delta n}\right|=3.83>2.306=t_{\kappa p}$, следует отвергнуть нулевую гипотезу $H_0: r=0$, то есть существует линейная зависимость между доходами и объемом потребления, коэффициент корреляции статистически значим.

Найдем, каково ожидаемое потребление \widehat{Y}_n домашнего хозяйства с доходом $X_n = 7$ усл. ед.: $\widehat{Y}_n(7) = 0.042 \cdot 7 + 0.09 = 0.384$ усл. ед. – точечная оценка.

Найдем доверительный интервал для прогноза. Вычислим среднюю стандартную ошибку прогноза по формуле:

$$m_{\hat{y}_n} = \sigma_{ocm} \sqrt{1 + \frac{1}{n} + \frac{(x_n - \bar{x})^2}{n \sum_{i=1}^n (x - \bar{x})^2}} = \sqrt{\frac{\sum_{i=1}^n (y - \hat{y})^2}{n - 2}} \cdot \sqrt{1 + \frac{1}{n} + \frac{(x_n - \bar{x})^2}{n \sigma_x^2}}$$

Задача скачана с сайта www.MatBuro.ru

©МатБюро - Решение задач по математике, статистике, экономике, программированию Еще решения математической статистики: www.matburo.ru/ex_subject.php?p=ms

Здесь
$$n = 10$$
, $x_n = 7$, $\overline{x} = 3,94$.

$$\sum_{i=1}^{n} (y - \hat{y})^2 = \sum_{i=1}^{10} (y - \hat{y})^2 = 0,011$$
,
$$\sum_{i=1}^{n} (x - \overline{x})^2 = \sum_{i=1}^{12} (x - \overline{x})^2 = 10,2$$
.

Дополнительные расчеты ниже:

											Сумма
X_i	2,20	2,80	3,00	3,50	3,90	4,20	4,40	4,80	5,10	5,50	39,400
y_i	0,13	0,21	0,28	0,26	0,23	0,29	0,28	0,24	0,31	0,33	2,560
ŷ	0,182	0,208	0,216	0,237	0,254	0,266	0,275	0,292	0,304	0,321	2,555
$(y-\hat{y})^2$	0,003	6E-06	0,004	5E-04	6E-04	6E-04	3E-05	0,003	3E-05	8E-05	0,011

Получаем:

$$m_{\hat{y}_n} = \sqrt{\frac{0,011}{8}} \cdot \sqrt{1 + \frac{1}{10} + \frac{(7 - 3,94)^2}{10 \cdot 10,2}} \approx 0,0405.$$

Определяем по таблице Стьюдента t по параметрам: k=n-2=8 степеней свободы, $\alpha=0,05$, откуда t=2,31

Получаем интервал для прогнозного значения:

$$\begin{split} \widehat{y_n} - t \cdot m_{\widehat{y}_n} &< y_n < \widehat{y_n} + t \cdot m_{\widehat{y}_n} , \\ 0,384 - 2,31 \cdot 0,0405 &< y_n < 0,384 + 2,31 \cdot 0,0405 , \\ 0,29 &< y_n < 0,478 \end{split}$$

Дадим интерпретацию полученных результатов.

По результатам исследования можно сделать вывод, что между доходами и объемом потребления существует прямая линейная связь, которая является достаточно тесной (коэффициент корреляции 0,787). Доля дисперсии признака Y в общей дисперсии Y, объясненную регрессией Y по X, которая выражается через коэффициент детерминации 0,619 говорит о том, что линейная модель адекватна статистике на 61,9%.